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Abstract

We consider a controlled birth and death process that moves as
follows. Upon reaching a state i a pair of birth-death parameters
(A,u) is selected from a prescribed set. Then the process remains
in the state i until a birth or death occurs according to these para-
meters, at which time a pair of birth-death parameters is again selected.
This is repeated indefinitely. A cost of c(A,u) + h(i) per unit time
is incurred for selecting (),u) when the process is in state i, and a
reward is received for each birth. A policy is a rule for successively
selecting the birth-death parameters as a function of the state of the
process. We show, under some weak conditions, that there exist increasing
optimal policies for both the discounted and average reward criteria.
This means that it is optimal to increase the deaths and decrease the
births as the state of the process increases. We show how to compute
such an optimal policy for the case with two possible birth-death parameters.
We then apply our results to the optimal control of the arrival and service

rates in an M/M/1 queueing process.

Key Words: Markov decision processes, birth and death processes, queueing

processes, stochastic control, monotone optimal policies.
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Optimal Control of
Birth and Death Processes and Queues

by

Richard F. Serfozo
Syracuse University

1. Introduction

We shall study a controlled birth and death process that moves as
follows. When the process arrives at a state i (a nonnegative integer)
the following events occur.
(1) A pair (Aa,pa) of birth-death parameters is selgcted from the set
{(Al,ul), ey (Am,um)}. Think of (Aa,ua) or ae {1,...,m} as the action
taken. We assume that Al > Az Eoonn E Am > 0, and 0 < My S Hy S oo S M.

(2) The process remains in state i for a random time which has an expo-

nential distribution with parameter

]
o

A(i,a) = Aa fefai
AL il
a a
Then the process jumps to a neighboring state according to the transition
probabilities
q(i,a,i+l) = Aa/()‘a + u(l)’ q(i,a,i-1) = Ua/()‘a + Ua) when i 2 1,
and
q(0,a,l) = 1 when i = 0.
(3) A cost is incurred at a rate c(a) + h(i) per unit time, during the
sojourn in state i, for selecting the action a and being in state 1i.
We assume that c(a) is nondecreasing, and h(i) is convex nondecreasing

with h(0) = 0. A reward R is also received if the process jumps to

i + 1: the R is a nonnegative reward for a birth.
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This series of events is repeated indefinitely. Note that the birth-
death parameters are selected at jump times of the process: they
cannot be changed between jumps.

A policy f for successively choosing the birth-death parameters is
defined to be a mapping from the state space {0,1,...} to the action
space {1,...,m}, with the interpretation that action f(i) is taken when
the process is in state i. Each policy f, along with a rule for starting
the process, determines a continuous time birth and death process whose
birth-death parameters in state i are (Af(i)’“f(i))' We let Yn and Tn
denote the n-th state of the process, and the time at which the process
jumps to state Yn’ respectively. The action in state Yn is g f(Yn).
The discounted reward for the process is given by

@ =fT
e n = 4
We(i) =E.(Le gS(Yn,an) | B 1y

where f > 0 is a continuous time discount factor and gﬁ(i,a), the dis-

counted gain in a sojourn, is
“Eky 5 -Bt
gg(1,a) = E(e RE(Y,,1+1) - £ (c(a) + h(i))e "“at | Y =1, a_=a)

= (R~ c(a) - h(1))/(B + 2(0,a)) ifi=0
(AaR ="ca) = L))/ (8 T xUya)) 1f 1 > 1.
Here Tl is the exponential sojourn time in state i, the §(i,j) = 1 or O

according as i = j or 1 # j, and a reward p received at time t has a

value pe-ﬁt. Similarly, the average reward for the process is
..1 Nt’
ve(1) = lim ¢ "E (L g (X ,a) | X =1),
Lo n=0

where Nt = sup{n:Tn < t} is the number of jumps in time t.
A policy f* is called f-discounted optimal if

wf*(i) = s¥p Hf(i) for all 1,




and f* is called average optimal if
Vex (1) = sup v (1)
f
The aim is to find such optimal policies.

This controlled birth and death process is a continuous time Markov
decision process with bounded sojourn rates Aa ar ua. Such continuous
time processes are equivalent to simpler discrete time Markov decision
processes. This equivalence, which was originally used by Howard and
Veinott (for processes with finite state spaces) and more recently by
Lippman [5], is discussed in [9]. We use this equivalence herein to
show that the controlled birth and death process is equivalent to the
controlled random walk that we studied in [10]. Then applying the results
in [10], we show that there exist increasing discounted and average
optimal policies for the birth and death process. (We use increasing
herein to mean nondecreasing.) This says that it is optimal to increase
the probability of deaths and to decrease the probability of births as
the state of the process increases. The results in [10] for computing
average optimal policies also apply to the birth and death process. We
illustrate this for a two action problem (when m = 2).

In the last section of this paper, we show how our results apply
to the optimal control of the arrival and service rates of M/M/1 queueing
processes. Some of the results herein have been derived by different
approaches in [1] - [8], [11] and [12]. Bibliographies on the optimal
control of queues are in [4], [11] and [12].

2. Main Results

We first show that the controlled birth and death p-ocess is equivalent

to a controlled random walk. Next we establish the existence of increasing




discount and average optimal policies for the birth and death process.
Then we show how to compute one such policy.

We shall use the notation introduced above. In addition, we shall
consider a random walk on the nonnegative integers (as in [10]) which
moves as follows. Upon arriving at a location i the following events
occur.

(1) A pair of probabilities (pa,qa) are selected from the set
{(Pl’ql),---,(Pm,qm)}, where
P = Ak/A, q = uk/A and A = A+ Mo for 1 < k < m.

1

(1i) A reward ru(i,a) is received, where

(1) r (1,a) = ag,(1,a) (8 + A(1,a) "

(R - c(a) - h(i))/(B + A) for i = 0
(AaR - c(a) - h(d))/(B+ A) for i >1,
and a = A/(8 + A) is a discrete time discount factor.
(1ii) The next state of the walk is determined by the following transition
probabilities

p(i,a,i+l) = pa, p(i,a,i) = 1—pa-qa, p(i,a,i=1l) = T for i > 1,
and

p(0,a,1) = P and p(0,a,0) = 1-pa for i = 0.

This series of events is repeated indefinitely.

A policy f for this random walk is a function from the state space
{0,1,...} to the action space {1l,...,m}. (These policies are the same as
those for the birth and death process.) A policy f, along with a rule
for starting the process, determines a random walk {Xn:n ;_0}. where the
n-th action taken is (pa,qa) when f(Xn) = a. The expected discounted

reward for this process is

™ e, it e isiatd - e 0 T Ny L T N T P -~




= ' ( n = i
V(1) = Ef(nlox r, (X LE(X ) [ X = 1),

where
a=A(B + N)

The Vf exists and -~ < Vf(i) < =, since the r(i,a) is bounded from above.

The expected average return for the process is

1 n-1

e ¢ - - - | L

¢f(i) = lim n Ef( z rl(Xk,t(Xk)) | X0 By i
n*e k=0

Note that when a = 1 in (1) the £ = 0, and so

(2) r,(i,a) = ® - c(a) - WESAT - for £ =0

(LR = c(a) - h(1)A"" for & > 1.
D and average optimal policies are defined as before.

Lollowing result asserts that the birth and death process is
equivalent to this random walk in the sense that they have identical
optimal policies.

IEEQEEE~2‘1‘ A policy is B-discounted optimal for the birth and death
process if and only if it is a-discounted optimal for the random walk.
A policy is average optimal for the birth and death process if and only
if it is average optimal for the random walk.

Proof. Note that the transition probabilities and rewards of the two
processes are such that

p(1,a,3) =§ r(i,a)q(i,a, )27t if 14 ]

1~ A(i,a)a7L it 1 =,
and

ry(1,a) = g (1,a) (6 + A(1,2))/ (B + h).

Then from [9, Theorem 1.1] it follows that if f is any policy then
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wf(i) = Vf(i) and vf(i) = Ad{(i) for all 1.
Thus the assertions follow.

Our next result establishes the existence of increasing optimal
policies for our birth and death process. An increasing policy is of
the form

f(i) = a 1551 ia < i < iu+l’

where 0 = i, < 12 < Jov S = =, Under this policy, if the process

1 m = okl

is in state i and ia Ll then the birth-death parameters (Aa,ua)

a+l’

are selected. Since Al P e oy Am and My R s Moo then the selected
death rate increases as the state i increases, and the selected birth
rate decreases as i increases. In other words, the probability of
backward movement increases as the state i~increases.
TBSQEEELZ'Z' There exist increasing discounted and average optimal
policies for controlling the birth and death process.
Proof. Consider the controlled random walk we defined above for discounted
rewards. It satisfies the following conditions:
(3) Py & s TPl Gy B vev £ and . T 1.
(4) ru'(i,l) € wws g ru'(i,m) and ru'(i,l) > r“'(1+1,m) for all i,
where

r'(,a) = r (i+1,a) - r_(i,a) =f-[(1-xa>x +R(1)]1/ICE + 1K) 11 =0

( =(h(i+l) ~ h(i))/(B + M) if 1 > 1.

Then by [10, Theorem 2.1] it follows that there exists an increasing
a-discounted optimal policy for controlling the random walk. This policy

is also f-optimal, according to Theorem 2.2, for controlling the birth and

death process.

Now consider the controlled random walk for average rewards

(recall (2)). 1t also satisfies (3) - (4) and
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(5) rl(i.l) > e 2 rl(i,m) for all i.
Then by [10, Theorem 6.1], there exists an increasing average optimal
policy for the random walk. By Theorem 2.2, this policy is also average

optimal for the birth and death process.
In Theorem 2.2, we assumed that the birth-death parameters are

selected at each jump from a set { (X D ISl (0 ,nm); which 'is inde-

pay m
pendent of the state of the process. Suppose instead, that when the pro-
cess is in state i, then a pair of birth-death parameters (;(i,a),:(i,a))
is selected from a set ((:(i,l),;(i,[)),...,(I(i,m),C(i,m))}. Assume that
(6)  A(1.2) & oo 2 AEam), wlE 1) 5 oo 2 00Lm),
(7) dYE D) < adt < dv @m0, andidY (LR > 4L, m) for all 1,
where

d(i,a) = p(i,a) - x(i,a) and d'(i,a) = d(i+l,a) - d(i,a)
This controlled birth and death process is equivalent to the random walk
in Section 3 of [10]. The proof of this is the same as that for Theorem
2.1. From this equivalence, along with [10, Theorem 3.1] and an average
reward analog of it, it follows that Theorem 2.2 holds. This is also
discussed in [1] just for discounted rewards. Other analogs of Theorem 2.2
for decreasing policies, or for finite time horizons, can be obtained in

the same way from Theorem 2.3 or Theorem 9.1 in [10].

The results in [10] on the computation of average optimal policies

" also apply to birth and death processes. We illustrate this for a
special case.
Theorem 2.4. Suppose the birth and death process has two possible
parameter pairs (Al,ul) and (Az,uz) and that the reward for a sojourn in
state i is

go(i,a) = (-c(a) - ih)/Ar(i,a) for all a,

'iv 7

g‘
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where h > 0. Then it is average uptimal to select (w],u’) when the state

of the process is below n* and to use (A, ,y,) otherwise. Here n* is the

smallest integer for which l)n - 0, where
nn ={ m® h.l” + b - Lz(c(z) - C(l))/(h(wl—wz)(l~p2)) if N #1
Un™ + n(l+0,)/(1=0,) = 20,(c(2) - (~(1>)/(h('.1-;‘2)) if o, =1
and Py = Au/ua and b = (4 l-,Al)/((l-ul)(l—, 2)).
Furthermore

n* < | uZ(V(Z) = c(l))/(h(p]-\z)(l—wz)) if o) # 1
]IZHZ(C(J) - (‘(l))/(h(.’l-wz))ll/2 4ef Py = 1
Proof. The policy described in this theorem is average optimal, by
[10, Corollary 7.2], for the random walk, Thus, by Theorem 2.., it is
average optimal for the birth and death process.
3. QPtiyal Control of Arrival and Service Rates in an M/M/1 Queue
The following are examples of controlled birth and death processes
which have monotone optimal policies as we discussed above.
M/M/1 Queue with a Controlled Service Rate. Suppose an M/M/1 queue has
a fixed arrival rate ) and its service rate is controlled as follows.
At each service completion or customer arrival, the number of customers
in the system is observed. Based on this number a service rate My is

selected from the set {y ,um}, where the n's are subscripted so that

EERE
0 < Hy % G % W A cost c(a) per unit time is charged for using Wy

and a cost h(i) per unit time is charged for holding i customers in the
system. A reward R is also received from each customer. We assume that
c(a) is increasing, and h(i) is convex increasing and h(0) = 0. This is

a controlled birth and death process as in Theorem 2.2 with birth-death

parameters {(A,ul),...,(x,um)}. Thus it is optimal (for both discounted

i

-
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and average rewards) to increase the service rate as the number of cus-
tomers increases. This was proved in [3], and similar results for

finite length queues are discussed in [2], [8] and some of the references
in [4].

M/M/1 Queue with a Controlled Arrival Rate. Suppose an M/M/1 queue has a
fixed service rate p, and the arrival rate A is selected from a set

{X,,¢0.5,A }, where X, > ... > A > 0, at each service completion or

1 m 1 m
customer arrival. Costs c¢(a) and h(i) are incurred as above, and a
reward R is received from each customer. Then by Theorem 2.2 it is
optimal to decrease the arrival rate as the number of customers increases.
1This was proved in [7]: see [6] for finite queue lengths.
M/M/1 Queue with Controlled Arrival and Service Rates. Suppose in an M/M/1
queue that the arrival and service rate pair (Aa’“a) is selected, at each
service completicon and customer arrival, from a set {(%l,ul),...,(km,um)}
where ‘1 AR %m > 0 and! 0 < iy Rasia e b With the costs c(a) and

h(i), and reward R, as above, it is optimal to increase the service rate

and decrease the arrival rate as the number of customers increases.

T T T R R e SR Gy P NSO T, (R o e
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